Journal of Organometallic Chemistry, 279 (1985) 419–432 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

# PREPARATION OF HETEROMETALLIC COMPLEXES WITH CHELATING $\mu_2$ -CARBOMETHOXYVINYLID<u>ENE LIGANDS. X</u>-RAY CRYSTAL STRUCTURES OF Cp(OC)<sub>2</sub>MnW(CO)<sub>4</sub>( $\mu$ -C=CHCOOMe) AND [Cp(OC)<sub>2</sub>Mn( $\mu_2$ -C=CHCOOMe)]<sub>2</sub>Mo(CO)<sub>2</sub> (Cp = $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)

N.E. KOLOBOVA\*, L.L. IVANOV, O.S. ZHVANKO, A.S. BATSANOV and Yu.T. STRUCHKOV

Nesmeyanov Institute of Organoelement Compounds of the U.S.S.R. Academy of Sciences, 28 Vavilov Str., Moscow B-334 (U.S.S.R.)

(Received June 20th, 1984)

#### Summary

 $Cp(OC)_2Mn=C=CHCO_2Me$  and  $Cp(OC)_2Mn(\eta^2-HC=CCO_2Me)$  react with  $M(CO)_5(THF)$  (M = Mo, W) yielding the heterometallic complexes  $Cp(OC)_2$ -MnM(CO)<sub>4</sub>( $\mu$ -C=CHCOOMe) (VIa: M = W, VIb: M = Mo) and [Cp(OC)<sub>2</sub>-Mn( $\mu_2$ -C=CHCOOMe)]\_2Mo(CO)\_2 (VII). VIa and VIb have Mn-W and Mn-Mo bonds and VII has two Mn-Mo bonds bridged by the carbomethoxyvinylidene ligand, chelating Mo or W by carbonyl oxygen. VIa and VII have been characterized by an X-ray diffraction study.

## Introduction

Mononuclear complexes with unsaturated carbene, viz. vinylidene or allenylidene, ligands can give species with metal-metal bonds bridged via the terminal atom of a carbene moiety. The first example reported was the reaction between  $Cp(OC)_2M=C=CHPh$  and  $Cp(OC)_2M'(THF)$  (M and M' = Mn, Re), yielding binuclear  $Cp_2(OC)_4MM'(\mu-C=CHPh)$  complexes with the Mn-Mn, Mn-Re or Re-Re bond bridged by a phenylvinylidene ligand [1-3]. Later, Berke [4] and we [5] studied similar reactions of  $Cp(OC)_2Mn=C=CHCO_2Me$  (I) and allenylidene manganese complexes [6] and prepared  $[Cp(OC)_2Mn]_2(\mu-C=CHCO_2Me)$  (II) and  $[Cp(OC)_2Mn]_2(\mu-C=C=CR_2)$  (R = Ph, t-Bu, cyclohexyl, CH<sub>2</sub>Ph), respectively.

The manganese vinylidene complexes  $Cp(OC)_2Mn=C=CHR$  react with  $Fe_2(CO)_9$  similarly. The structure of the product depends on the nature of the substituent R. If R = Ph, complex III with a manganatrimethylenemethane moiety  $\pi$ -bonded to iron is formed [7]. On the contrary, under the same conditions, I ( $R = CO_2Me$ ) gives the heterometallic complex IV, the E and Z isomers of which were isolated [8].



In the present paper we report the reactions of I and  $Cp(OC)_2Mn(\eta^2 - HC \equiv CCO_2Me)$  (V) with Group VI metal carbonyl derivatives,  $M(CO)_5(THF)$  (M = Cr, Mo and W).

## **Results and discussion**

I and V react with  $W(CO)_5(THF)$  in THF at 60°C, yielding the heterometallic complex VIa with a Mn–W bond bridged by the carbomethoxyvinylidene ligand chelating the tungsten atom by its carbonyl oxygen. With  $Mo(CO)_5(THF)$ , under the same conditions, I forms complex VIb (isostructural and isoelectronic with VIa) and a trinuclear complex VII, while V gives VII as a single product. In VII the Mo atom participates in two Mn–Mo bonds bridged by  $\mu_2$ -carbomethoxyvinylidene moieties chelating Mo in the same manner as W in VI.

 $Cr(CO)_{5}(THF)$  does not react with I and V under mild conditions.

VI and VII are dark brown, crystalline, air-stable substances, moderately soluble in aliphatic hydrocarbons and  $CCl_4$  but readily soluble in  $CH_2Cl_2$ ,  $CHCl_3$  and polar solvents.

The IR spectra (Table 1) of VIb, on one hand, and of VIa and VII, on the other, exhibit respectively five and six  $\nu(C\equiv O)$  bands in the range 1800–2100 cm<sup>-1</sup>, corresponding to terminal carbonyl groups. The frequencies and relative intensities of these bands are similar for VIa and VIb, proving them to be isostructural. The spectrum of VII differs from that of VI by the absence of a  $\nu(C\equiv O)$  band at 2060

cm<sup>-1</sup> and the presence of another one at 1870 cm<sup>-1</sup>. It is noteworthy that neither VI nor VII exhibits  $\nu$ (C=O) bands at 1700-1720 cm<sup>-1</sup> characteristic of the CO<sub>2</sub>Me group. Nevertheless, the intense bands at about 1550 cm<sup>-1</sup> can be attributed to this ester group coordinated with Mo or W via its carbonyl oxygen, thus forming a chelate ring (cf. 1514 cm<sup>-1</sup> for Cp(OC)<sub>2</sub>MoC(Me)=C(Me)COMe [9]).

In the <sup>1</sup>H NMR spectra of VI and VII (Table 1) there are three singlets, viz. at 4.6-4.9 (Cp), 3.33-3.9 (OMe) and 7.04-7.2 ppm (=CH), with an intensity ratio of 5/3/1. The chemical shifts of all of these signals are in agreement with those of I, II [5] and V.

In the <sup>13</sup>C NMR spectrum of VIa (Table 1), the signal of the  $\alpha$ -carbon atom of the bridging carbomethoxyvinylidene ligand (347.8 ppm) is shifted to lower field with respect to the signals in the spectra of  $[Cp(OC)_2Mn]_2(\mu$ -C=CHPh) (VIII) (284.16 ppm) [1] and II (284.41 ppm) [5].

The mass spectra of VIa and VIb exhibit peaks of molecular ions  $P^+$  at m/z 556 (<sup>184</sup>W) and 470 (<sup>98</sup>Mo), respectively, and decarbonylated ions  $P^+ - n(CO)$  (n = 1-6). The mass spectrum of VII could not be measured.

The molecular structures of VIa and VII (Figs. 1 and 2, Tables 2 and 3) were established by an X-ray single-crystal study. Although the crystals of VIa and the Z isomer of IV are not isostructural, their molecular structures are similar. The main difference is caused by the different coordination of the W atom in VIa and the Fe atom in Z-IV, which does not form a bond with O(7). The trinuclear molecule of VII is situated on a crystallographic two-fold axis passing through the Mo atom.

The geometries of the  $Cp(OC)_2Mn$  moieties and vinylidene bridges in VIa and VII are essentially the same. Most of the bonds formed by the W atom in VIa are slightly longer than the Mo bonds in VII. However, the O(7)-W and O(7)-Mo bond

| TA | BL | E | 1 |
|----|----|---|---|
|----|----|---|---|

| Complex | x v(c             | $m^{-1}$ , $CCl_4$ )                        |                         |             | δ( <sup>1</sup> ] | $\delta(^{1}H)$ (ppm) TMS   |     |                            |                   | Ref.      |
|---------|-------------------|---------------------------------------------|-------------------------|-------------|-------------------|-----------------------------|-----|----------------------------|-------------------|-----------|
|         | v(C               | )≡0)                                        |                         | ₽(C=C       | ) Cp              | 0                           | СН, | СН                         | Solvent           |           |
| I       |                   | Ovs, 1975vs<br>clohexane)                   |                         | 1712s       | 5.10              | is 3.6                      | 61s | 5.85s                      | CC14              | 27        |
| v       | 200<br>(n-        | )Ovs, 1940vs<br>hexane)                     |                         | 1715s       | 4.73              | ls 3.9                      | 92s | 6.33s                      | CDCl <sub>3</sub> | 27        |
| VIa     | 205<br>195        | 57vs, 1990vs, 19<br>58s, 1932vs, 191        | 75m<br>2w               | 1550vs      | <b>4.9</b> 4      | ls 3.9                      | 90s | 7.20s                      | CCl₄              | This work |
| VIb     | 200<br>195<br>bro | 50vs, 1990vs, br<br>57vs, 1945vs, 19<br>bad | 15w                     | 1555vs      | 5                 | -                           |     | -                          | -                 | This work |
| VII     | 201<br>194        | 10w, 1995vw, 19<br>46vs, 1912w, 18          | 985vs,<br>70w,br        | 1550vs      | s 4.66            | is 3.:                      | 33s | 7.04s                      | CDCl <sub>3</sub> | This work |
|         | Cp                | CO at Mn                                    | CO at                   | W           | C=0               | C <sub>a</sub> <sup>a</sup> |     | $\overline{C_{\beta}}^{a}$ | СН3               |           |
| VIa     | 88.27             | 228.08                                      | 222.0<br>221.0<br>216.4 | 1<br>7<br>3 | 186.01            | 347.8                       | 0   | 122.51                     | 53.61             | This work |

# IR AND NMR SPECTRAL DATA

<sup>a</sup>  $C_{\alpha}$  and  $C_{\beta}$  of the carbomethoxyvinylidene moiety (i.e. C(7) and C(8) in Figs. 1 and 2).



Fig. 1. Molecular structure of VIa (hydrogen atoms have been omitted).

TABLE 2

BOND DISTANCES (Å) IN THE STRUCTURES OF VIa (M = W) AND VII (M = Mo)

| Bond     | VIa       | VII       | Bond          | VIa      | VII      |
|----------|-----------|-----------|---------------|----------|----------|
| M-Mn     | 2.9939(8) | 2.9638(3) | C(1)-O(1)     | 1 135(8) |          |
| M-O(7)   | 2.238(4)  | 2.238(2)  | C(2)-O(2)     | 1.151(7) | 1.150(3) |
| M-C(1)   | 2.050(6)  | _         | C(3) - O(3)   | 1 129(7) | -        |
| M-C(2)   | 1 996(5)  | 1.976(2)  | C(4)-O(4)     | 1.145(7) |          |
| M-C(3)   | 2.051(6)  | -         | C(5)-O(5)     | 1.154(7) | 1.149(3) |
| MC(4)    | 2.041(6)  | _         | C(6)-O(6)     | 1.157(7) | 1.150(3) |
| M-C(7)   | 2 1 30(5) | 2.110(2)  | C(7)-C(8)     | 1.337(7) | 1.346(3) |
| MC(5)    | 3.186(6)  | 3.151(2)  | C(8) - C(9)   | 1 427(8) | 1.432(3) |
| Mn-C(5)  | 1.811(6)  | 1.804(2)  | C(9)-O(7)     | 1.255(6) | 1.241(3) |
| Mn-C(6)  | 1.773(6)  | 1.773(3)  | C(9)-O(8)     | 1.322(7) | 1.329(3) |
| Mn-C(7)  | 1.903(5)  | 1.909(2)  | O(8) - C(10)  | 1.442(7) | 1.450(3) |
| Mn-C(11) | 2.158(6)  | 2.162(3)  | C(11)-C(12)   | 1.421(8) | 1.407(4) |
| Mn-C(12) | 2.171(6)  | 2.186(3)  | C(12)-C(13)   | 1.411(8) | 1.417(4) |
| Mn-C(13) | 2.144(6)  | 2.153(3)  | C(13) - C(14) | 1.413(9) | 1.410(4) |
| Mn-C(14) | 2.117(6)  | 2.129(3)  | C(14)-C(15)   | 1 426(9) | 1.413(4) |
| Mn-C(15) | 2.126(6)  | 2.126(3)  | C(15) - C(11) | 1 391(8) | 1.405(4) |
| Mn-Cp    | 1.774     | 1 785     |               |          |          |

distances are equal (2.238 Å) and usual for a donor-acceptor bond involved in a 5-membered chelate ring, cf. 2.21–2.24 Å in molybdenum maleate complexes [11], 2.31 and 2.25 Å in two isostructural complexes  $(\eta^3-C_3H_5)(OC)_2M(O_2CCF_3)-(MeOCH_2CH_2OMe)$ , with M = Mo and W, respectively [12].

According to the EAN rule, the Mn–W (in VIa) and Mn–Mo (in VII) distances correspond to single bonds, which, however, are significantly shortened due to the presence of  $\mu$ -vinylidene ligands. Thus the Mn–Mo distance in VII is 2.964 vs. 3.08 Å in the unbridged complex Cp(OC)<sub>3</sub>MoMn(CO)<sub>5</sub> [13] and 3.054 Å in (C<sub>5</sub>H<sub>4</sub>PPh<sub>2</sub>)(OC)<sub>3</sub>MoMn(CO)<sub>4</sub> [14]. In the latter, the phosphonium ylide coordinating manganese by its P atom and molybdenum by the Cp ring causes no shortening of the Mo–Mn bond.

To our knowledge, VIa is the first organometallic compound with a Mn–W bond studied by X-ray diffraction. This bond is shorter (2.994 Å) than half the sum (3.07 Å) of the single-bonded distances Mn–Mo of 2.904 Å in  $Mn_2(CO)_{10}$  [15] and W–W of 3.24 Å in  $[Cp(OC)_3W]_2$  [16].

All the carbonyl groups in VIa and VII are terminal, except the semi-bridging C(5)O(5) group. The latter is directed towards the W(Mo) atom (the WMnC(5) angle being acute) and interacts weakly with it. Therefore the Mn-C(5)-O(5) moiety is bent (7.4° in VIa, 8.0° in VII), and the Mn-C(5) bond is 0.03-0.04 Å longer than the Mn-C(6) bond of the terminal CO group. In Z-IV and  $[Cp(OC)_2Mn]_2(\mu$ -C=CHR) (VIII, R = Ph [17], H [18]), one of the CO groups at the Mn atom is always semi-bridging, as in VIa and VII. In VIa the WC(2)O(2) bond, which is *trans* to O(7), is considerably shorter (1.996 Å) than the other W-CO bonds, which are *trans* 



Fig. 2. Molecular structure of VII (projection on the MoMn<sub>2</sub> plane; hydrogen atoms have been omitted).

to the CO groups and the  $\mu$ -vinylidene ligand and have an average length of 2.047 Å.

In both VIa and VII, the W (or Mo), Mn, C(7), C(8), C(9) and O(7) atoms are coplanar within 0.03 (VIa) or 0.04 Å (VII). Their mean plane (A) forms a dihedral angle of  $37.2^{\circ}$  (VIa) or  $38.7^{\circ}$  (VII) with the Cp plane. The plane defined by the three metal atoms in VII forms an angle of  $66.5^{\circ}$  with the A plane and an angle of  $44.2^{\circ}$  with the Cp plane. The O(8) and C(10) atoms are bent out of the A plane by -0.06 and 0.02 Å in VIa and by 0.17 and 0.29 Å in VII.

In Table 4 the geometrical parameters of the carbomethoxyvinylidene moiety in VIa, VII and Z-IV are compared with the corresponding average values in uncoordi-

# TABLE 3

|  | BOND ANGLES (°) | IN THE | STRUCTURES | OF VIa | AND VI |
|--|-----------------|--------|------------|--------|--------|
|--|-----------------|--------|------------|--------|--------|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Angle             |           | Angle       |                 | Angle       |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|-------------|-----------------|-------------|-----------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Structure VIa     |           |             |                 |             |           |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MnWO(7)           | 111.6(1)  | O(7)WC(3)   | 78.1(2)         | C(2)WC(3)   | 90.9(2)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MnWC(1)           | 88.5(2)   | O(7)WC(4)   | 90.5(2)         | C(2)WC(4)   | 85.6(2)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MnWC(2)           | 79.5(2)   | O(7)WC(5)   | 133.9(1)        | C(2)WC(5)   | 110.4(2)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MnWC(3)           | 170.2(2)  | O(7)WC(7)   | 90.5(2)         | C(2)WC(7)   | 118.6(2)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MnWC(4)           | 88.5(2)   | C(1)WC(2)   | 92.5(2)         | C(3)WC(4)   | 92.7(2)   |
| $\begin{array}{l c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $MnW \cdots C(5)$ | 33.9(1)   | C(1)WC(3)   | 90.0(2)         | C(3)WC(5)   | 66.3(2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MnWC(7)           | 39.2(1)   | C(1)WC(4)   | 176.7(2)        | C(3)WC(7)   | 150.5(2)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O(7)WC(1)         | 91.9(2)   | C(1)WC(5)   | 137.7(2)        | C(4)WC(5)   | 57.8(2)   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O(7)WC(2)         | 168.1(2)  | C(1)WC(7)   | 90.5(2)         | C(4)WC(7)   | 88.1(2)   |
| $\begin{array}{l c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           | ,           |                 | C(5)WC(7)   | 114.6(2)  |
| $\begin{array}{l c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Structure VII     |           |             |                 |             |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MnMoMn'           | 160.16(1) | O(7)MoO(7)  | 87.04(5)        | C(2)MoC'(5) | 57.85(8)  |
| $\begin{array}{l c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MnMoO(7)          | 113.02(4) | O(7)MoC(2)  | 94.34(8)        | C(2)MoC(7)  | 90 0(1)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MnMoO'(7)         | 81.89(4)  | O(7)MoC'(2) | 169.27(8)       | C(2)MoC'(7) | 117.6(1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MnMoC(2)          | 87.79(7)  | O(7)MoC(5)  | 130.98(6)       | C(5)MoC'(5) | 167.48(6) |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MnMoC'(2)         | 77.71(7)  | O(7)MoC'(5) | 60.16(6)        | C(5)MoC(7)  | 66.57(7)  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MnMoC(5)          | 34.15(4)  | O(7)MoC(7)  | 73.10(7)        | C(5)MoC'(7) | 117.84(7) |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MnMoC(5)          | 142.19(4) | O(7)MoC'(7) | 80.19(7)        | C(7)MoC'(7) | 142.9(8)  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MnMoC(7)          | 39.92(6)  | C(2)MoC'(2) | 86.3(1)         |             |           |
| AngleVIaVIIAngleVIaVIIMMnC(5)78.9(2)78.63(8)MnC(5)O(5)172.6(5)172.0(2)MMnC(6)107.8(2)109.13(8)MnC(6)O(6)177.7(5)179.2(2)MMnC(7)45.1(2)45.18(7)MC(7)Mn95.7(2)94.9(1)MMnCp125.0124.1MC(7)C(8)119.6(4)119.3(2)C(5)MnC(6)88.5(3)86.4(1)MnC(7)C(8)144.7(4)145.8(2)C(5)MnC(7)113.1(2)108.6(1)C(7)C(8)C(9)112.9(5)112.4(2)C(5)MnCp121.1122.5C(8)C(9)O(7)120.2(5)121.0(2)C(6)MnC7)80.0(2)78.0(1)C(8)C(9)O(8)118.6(5)118.1(2)C(6)MnCp122.1122.2O(7)C(9)O(8)121.2(5)120.9(2)C(7)MnCp120.5124.6MO(7)C(9)114.8(3)114.0(1)MC(1)O(1)179.0(5)-C(9)O(8)C(10)116.5(4)114.9(2)MC(3)O(3)179.2(5)-C(11)C(12)C(13)107.1(5)108.6(2)MC(3)O(3)179.2(5)-C(11)C(12)C(13)107.1(5)107.3(2)MC(4)O(4)175.3(5)-C(12)C(13)C(14)108.1(5)108.5(2)MC(5)Mn67.2(2)67.22(7)C(13)C(14)C(15)108.1(5)107.4(2)MC(5)O(5)120.0(4)120.0(8)C(14)C(15)C(11)107.3(5)108.2(2) | MnMoC'(7)         | 151.22(6) | C(2)MoC(5)  | 111.90(8)       |             |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Angle             | VIa       | VII         | Angle           | VIa         | VII       |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MMnC(5)           | 78.9(2)   | 78.63(8)    | MnC(5)O(5)      | 172.6(5)    | 172.0(2)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MMnC(6)           | 107.8(2)  | 109.13(8)   | MnC(6)O(6)      | 177.7(5)    | 179.2(2)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MMnC(7)           | 45.1(2)   | 45.18(7)    | MC(7)Mn         | 95.7(2)     | 94.9(1)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MMnCp             | 125.0     | 124.1       | MC(7)C(8)       | 119.6(4)    | 119.3(2)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(5)MnC(6)        | 88.5(3)   | 86.4(1)     | MnC(7)C(8)      | 144.7(4)    | 145.8(2)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(5)MnC(7)        | 113.1(2)  | 108.6(1)    | C(7)C(8)C(9)    | 112.9(5)    | 112.4(2)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(5)MnCp          | 121.1     | 122.5       | C(8)C(9)O(7)    | 120.2(5)    | 121.0(2)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(6)MnC(7)        | 80.0(2)   | 78.0(1)     | C(8)C(9)O(8)    | 118.6(5)    | 118.1(2)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(6)MnCp          | 122.1     | 122.2       | O(7)C(9)O(8)    | 121.2(5)    | 120.9(2)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(7)MnCp          | 120.5     | 124.6       | MO(7)C(9)       | 114.8(3)    | 114.0(1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MC(1)O(1)         | 179.0(5)  | -           | C(9)O(8)C(10)   | 116.5(4)    | 114.9(2)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MC(2)O(2)         | 176.8(5)  | 175.5(2)    | C(12)C(11)C(15) | 109.4(5)    | 108.6(2)  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MC(3)O(3)         | 179.2(5)  | ~           | C(11)C(12)C(13) | 107.1(5)    | 107.3(2)  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MC(4)O(4)         | 175.3(5)  | _           | C(12)C(13)C(14) | 108.1(5)    | 108.5(2)  |
| $M \dots C(5)O(5)  120.0(4)  120.0(8) \qquad C(14)C(15)C(11)  107.3(5) \qquad 108.2(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MC(5)Mn           | 67.2(2)   | 67.22(7)    | C(13)C(14)C(15) | 108.1(5)    | 107.4(2)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MC(5)O(5)         | 120.0(4)  | 120.0(8)    | C(14)C(15)C(11) | 107.3(5)    | 108.2(2)  |

### GEOMETRY OF THE CARBOMETHOXYVINYLIDENE MOIETY IN COMPLEXES VIa, VII, Z-IV AND UNCOORDINATED MOLECULE IX (average)



| Structure         | Vla       | VII                                 | Z-1V     | IX    |
|-------------------|-----------|-------------------------------------|----------|-------|
|                   | M = W     | $\mathbf{M} = \mathbf{M}\mathbf{o}$ | M = Fe   | -     |
| Distance (Å)      |           |                                     |          |       |
| M-C(7)            | 2.130(5)  | 2.110(2)                            | 1.94(1)  | -     |
| C(7)~C(8)         | 1.337(7)  | 1.346(3)                            | 1.30(2)  | 1.316 |
| C(8)-C(9)         | 1.427(8)  | 1.432(3)                            | 1.49(3)  | 1.478 |
| C(9)-O(7)         | 1.255(6)  | 1.241(3)                            | 1.21(2)  | 1.188 |
| M-O(7)            | 2.238(4)  | 2.238(2)                            | 3.50(1)  | _     |
| M–Mn              | 2.9939(8) | 2.9638(3)                           | 2.703(4) | -     |
| Mn-C(7)           | 1.903(5)  | 1.909(2)                            | 1.95(1)  | -     |
| Angle (°)         |           |                                     |          |       |
| MC(7)C(8)         | 119.6(4)  | 119.3(2)                            | 139(1)   | _     |
| C(7)C(8)C(9)      | 112.9(5)  | 112.4(2)                            | 127(2)   | 120.8 |
| C(8)C(9)O(7)      | 120.2(5)  | 121.0(2)                            | 124(2)   | 126.1 |
| Torsion angle (°) |           |                                     |          |       |
| C(7)C(8)C(9)O(7)  | 2.0(5)    | 6.0(2)                              | 21       | 7     |

nated molecules of *meta*- [19] and *para*-C<sub>6</sub>H<sub>4</sub>(CH=CHCO<sub>2</sub>Me)<sub>2</sub> [20] and (4-HO)(3-O<sub>2</sub>N)C<sub>6</sub>H<sub>3</sub>CH=CHCO<sub>2</sub>Me [21] \*. In all three complexes the C(7)=C(8) and C(9)=O(7) double bonds have *cis* orientation, as in IX. In Z-IV the O(7) atom is pushed away from the Fe atom with a filled 18-electron shell. The Fe...O(7) distance is increased to 3.50 Å due to widening of the C(7)C(8)C(9) and FeC(7)C(8) bond angles and to the increasing C(7)C(8)C(9)O(7) torsion angle (Table 4). On the contrary, in VIa and VII the carbomethoxyvinylidene ligand is bent towards the W(Mo) atom and the C(7)C(8)C(9) and C(8)C(9)O(7) angles are decreased.

The bond distances in the carbomethoxyvinylidene moiety of Z-IV are essentially the same as those in IX and consistent with the standard geometry of an ester group [22]. In VIa and VII the formation of 5-membered metallacycles leads to some  $\pi$ -delocalization. In VIa and VII the C(8)–C(9) single bond is shorter and both the C(7)=C(8) and C(9)=O(7) double bonds are longer than those in Z-IV and IX, although the C(7)=C(8) bond length in VIa and VII is close to the standard C( $sp^2$ )=C( $sp^2$ ) bond length of 1.333 Å [23], while in Z-IV and IX it is still shorter. The Mn–C(7) bonds in VIa and VII are shorter than those in Z-IV (1.95 Å) and VIII (average 1.97 Å). All these features are consistent with a contribution of the form 1 to the structures of VIa and VII.

<sup>\*</sup> From here onwards the uncoordinated MeO<sub>2</sub>CCH=CH group is referred to as IX.



SCHEME 1



Probably the formation of VI from I and  $M(CO)_5(THF)$  (M = Mo, W) proceeds via an intermediate  $\pi$ -complex A and its isomer B (Scheme 1). The latter is unstable due to steric hindrance between one of the carbonyl groups at the M atom and the ester group. The steric strain is released by elimination of the CO group mentioned. The arising electron defficiency of M is then compensated by a lone pair of electrons of the oxygen atom. This replacement is thermodynamically favourable because in the case of Group VI transition metals the M $\leftarrow$ O=C bond has a higher dissociation energy than the M-CO bond, e.g. from thermochemical data, 45.4 kcal/mol for Mo $\leftarrow$ O(pentane-2,4-dione) vs. 36.2 kcal/mol for Mo-CO. Both bond energies increase in the series Cr < Mo < W [24-26]. The  $\pi$ -delocalization over the metallacycle (see above) in VI and VII can provide an additional energy gain.

The formation of VIa and VII from V is probably preceded by rearrangement (induced by  $M(CO)_5(THF)$ ) of the  $\pi$ -acetylene ligand of V into an  $\eta^1$ -vinylidene ligand.

The reactions of I and V with  $W(CO)_5(THF)$  stop at the stage of the formation of VI, while the reactions of the same complexes with  $Mo(CO)_5(THF)$  proceed further to the trinuclear bis-chelate complex VII. As the dissociation energy of the M-CO

(Continued on p. 430)

#### TABLE 5

|                                             | Vla                                                 | VII                                                               |
|---------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|
| Formula                                     | C <sub>15</sub> H <sub>9</sub> MnO <sub>8</sub> W   | C <sub>24</sub> H <sub>18</sub> Mn <sub>2</sub> MoO <sub>10</sub> |
| Space group                                 | P2 <sub>1</sub> /n                                  | C2/c                                                              |
| a, Å                                        | 7.523(3)                                            | 19.436(5)                                                         |
| b, Å                                        | 19.456(6)                                           | 8.038(2)                                                          |
| <i>c</i> , Å                                | 11.175(4)                                           | 15.817(4)                                                         |
| β, °                                        | 96.04(3)                                            | 98.61(2)                                                          |
| <i>V</i> , Å <sup>3</sup>                   | 1627(1)                                             | 2443(1)                                                           |
| Z                                           | 4                                                   | 4                                                                 |
| $d_{\rm calcd}$ , g cm <sup>-3</sup>        | 2.27                                                | 1.88                                                              |
| Scan mode                                   | $\theta/2\theta$                                    | $\theta/2\theta$                                                  |
| $2\theta_{\rm max},^{\circ}$                | 54                                                  | 60                                                                |
| No. of independent                          |                                                     |                                                                   |
| reflections with $I \ge 2\sigma$            | 2965                                                | 2443                                                              |
| R                                           | 0.030                                               | 0.023                                                             |
| Rw                                          | 0.036                                               | 0.023                                                             |
| Weighting scheme                            | $w = \left[\sigma_F^2 + (0.005 F_0 )^2\right]^{-1}$ | $w = \sigma_F^{-2}$                                               |
| $\mu$ (Mo- $K_{\alpha}$ ), cm <sup>-1</sup> | 83.3                                                | 15.9                                                              |

CRYSTAL DATA

|              |           |           |          |                 |          |                 | -               |                 | 7               |  |
|--------------|-----------|-----------|----------|-----------------|----------|-----------------|-----------------|-----------------|-----------------|--|
| \tom         | x         | y         | 2        | B <sub>11</sub> | $B_{22}$ | B <sub>33</sub> | B <sub>12</sub> | B <sub>13</sub> | B <sub>23</sub> |  |
| Iructure     | VIa       |           |          |                 |          |                 |                 |                 |                 |  |
| >            | 14052(3)  | 4803(1)   | 29487(2) | 1.10(1)         | 1.27(1)  | 1.35(1)         | -0.025(6)       | 0.146(7)        | 0.021(6)        |  |
| Чn           | 24760(10) | 19630(4)  | 30173(7) | 1.24(3)         | 1.32(3)  | 1 74(3)         | -0.03(3)        | 0.26(2)         | - 0.12(2)       |  |
| )(I)         | - 753(6)  | 757(2)    | 387(4)   | 3.9(2)          | 2.7(2)   | 2.2(2)          | 0.0(2)          | -1.1(2)         | 0.3(2)          |  |
| <b>X</b> (2) | - 1638(5) | 1093(2)   | 4356(4)  | 2.0(2)          | 2.3(2)   | 2.5(2)          | 0.4(1)          | 0.8(1)          | 0.4(1)          |  |
| )(3)         | - 354(5)  | - 1004(2) | 3012(4)  | 2.6(2)          | 1.9(2)   | 3.0(2)          | -0.4(2)         | 0.6(1)          | -0.2(1)         |  |
| )(4)<br>(4)  | 3463(6)   | 339(2)    | 5576(4)  | 2.4(2)          | 2.8(2)   | 1.7(2)          | 0.4(1)          | -0.1(1)         | 0.1(1)          |  |
| <b>)</b> (5) | - 1388(5) | 2147(2)   | 2275(4)  | 1.5(2)          | 2.7(2)   | 2.8(2)          | 0.6(1)          | 0.0(1)          | 0.6(2)          |  |
| <b>(</b> 9)( | 3214(5)   | 2358(2)   | 558(4)   | 2.1(2)          | 3.6(2)   | 2.5(2)          | 0.4(2)          | 0.7(1)          | 1.0(2)          |  |
| E<br>S       | 3415(4)   | - 176(2)  | 2145(3)  | 1.4(1)          | 1.6(2)   | 1.9(2)          | 0.0(1)          | 0.4(1)          | -0.2(1)         |  |
| (8)          | 6101(5)   | - 192(2)  | 1439(4)  | 1.8(2)          | 1.8(2)   | 2.7(2)          | 0.3(1)          | 0.5(1)          | 0.8(1)          |  |
| (1)          | 22(8)     | 653(3)    | 1296(6)  | 2.0(2)          | 1.6(2)   | 2.4(3)          | 0.2(2)          | 0.2(2)          | 0.0(2)          |  |
| (2)          | -537(7)   | 883(3)    | 3815(5)  | 1.6(2)          | 1.7(2)   | 1.8(2)          | -0.3(2)         | 0.4(2)          | 0.5(2)          |  |
| (E)          | 271(7)    | -477(3)   | 2998(5)  | 1.5(2)          | 1.6(2)   | 2.3(2)          | -0.1(2)         | 0.2(2)          | 0.1(2)          |  |
| <u>(</u> 4)  | 2768(7)   | 367(3)    | 4615(5)  | 1.3(2)          | 1.7(2)   | 2.0(2)          | 0.3(2)          | 0.4(2)          | 0.0(2)          |  |
| (5)          | 104(7)    | 2029(3)   | 2547(5)  | 2.3(2)          | 1.3(2)   | 1.9(2)          | - 0.2(2)        | 0.5(2)          | 0.2(2)          |  |
| ( <u>)</u>   | 2886(7)   | 2205(3)   | 1541(5)  | 1.1(2)          | 1.9(2)   | 2.5(2)          | 0.2(2)          | 0.5(2)          | 0.4(2)          |  |
| (2)          | 3504(7)   | 1135(3)   | 2500(5)  | 1.5(2)          | 1.5(2)   | 1.4(2)          | -0.3(2)         | 0.0(2)          | 0.0(2)          |  |
| (8)          | 4912(7)   | 864(3)    | 2034(5)  | 1.4(2)          | 1.5(2)   | 2.0(2)          | 0.0(2)          | 0.2(2)          | 0.0(2)          |  |
| (6)          | 4779(7)   | 137(3)    | 1882(5)  | 1.6(2)          | 2.0(2)   | 1.3(2)          | - 0.3(2)        | 0.1(2)          | -0.1(2)         |  |
| (10)         | 5860(8)   | - 919(3)  | 1240(6)  | 2.4(2)          | 1.9(2)   | 3.0(3)          | 0.1(2)          | 0.6(2)          | -0.6(2)         |  |
|              |           |           |          |                 |          |                 |                 |                 |                 |  |

ATOMIC COORDINATES (×10<sup>4</sup>, for W, Mo and Mn ×10<sup>5</sup>) AND ANISOTROPIC THERMAL FACTORS  $T = \exp[-1/4(B_{11}h^2a^{*2} + ... + 2B_{12}hka^{*}b^{*} + ...)]$ 

**TABLE 6** 

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (11)         | 2047(8)   | 2622(3)   | 4513(5)  | 2.3(2)   | 1.8(2)  | 2.0(2)  | 0.0(2)    | 0.5(2)    | -0.5(2)   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------|----------|----------|---------|---------|-----------|-----------|-----------|
| $ \begin{array}{ccccccc} (13) & 4507(8) & 1939(3) & 4514(5) & 2.1(2) & 2.8(3) & 1.9(2) & 0.0(2) & -0.4(2) & -0.9(2) \\ (14) & 4735(8) & 2518(4) & 3782(6) & 1.7(2) & 3.0(3) & 3.1(3) & -0.9(2) & 0.4(2) & -0.6(2) \\ (15) & 3182(8) & 2518(4) & 3782(6) & 1.7(2) & 3.0(3) & 3.1(3) & -0.3(2) & 0.4(2) & -0.6(2) \\ (16) & 1733(2) & 293(3) & 3778(3) & 1.7(3) & 2.4(2) & 1.8(2) & 1.1(1) & 0.94(1) & 0 \\ (16) & 1013(3) & 1/4 & 0.948(9) & 1.17(1) & 0.94(1) & 0 \\ (17) & 1013(3) & 1/4 & 0.948(9) & 1.17(1) & 0.94(1) & 0 \\ (20) & -0.612(1) & 173(3) & 3.427(1) & 1.238(8) & 3.39(9) & 4.4(1) & -0.37(7) & 0.007(1) & 0.204(7) \\ (20) & -981(1) & -1826(3) & 3427(1) & 1.238(8) & 3.39(9) & 4.4(1) & -0.87(7) & 0.007(1) & 0.204(7) \\ (20) & -981(1) & 3574(3) & 2187(1) & 1.23(6) & 1.61(7) & 1.28(6) & 0.18(7) & -0.88(7) & -0.294(8) \\ (20) & -9827(1) & 3051(2) & 22920(1) & 1.72(6) & 4.4(1) & 1.08(7) & 0.427(7) & 0.204(7) \\ (20) & -956(1) & 3051(2) & 22920(1) & 1.72(6) & 4.4(1) & -0.87(7) & 0.207(7) & -0.294(8) \\ (21) & -666(1) & 3051(2) & 22920(1) & 1.72(6) & 1.61(7) & 1.28(6) & 0.18(7) & -0.88(7) & -0.294(8) \\ (21) & -666(1) & 3051(2) & 22920(1) & 1.77(6) & 1.84(7) & 0.18(6) & 0.18(7) & 0.27(6) & -0.19(7) \\ (21) & -456(1) & 2.67(3) & 1.24(8) & 2.67(1) & 1.24(8) & 0.07(5) & -0.19(7) \\ (21) & -456(1) & 2.04(1) & 1.23(6) & 1.04(8) & 0.27(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.13(7) & 0.18(6) & 2.30(1) & 2.30(1) & 1.24(1) & 2.24(1) & 0.23(6) & -0.06(6) & 0.18(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0.12(7) & -0$ | C(12)        | 2835(8)   | 1998(3)   | 4970(5)  | 2.7(2)   | 2.0(2)  | 1.8(2)  | 0.0(2)    | 0.0(2)    | - 0.6(2)  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(13)        | 4507(8)   | 1939(3)   | 4514(5)  | 2.1(2)   | 2.8(3)  | 1.9(2)  | 0.0(2)    | - 0.4(2)  | - 0.9(2)  |
| C(15) $3182(8)$ $2939(3)$ $3778(5)$ $2.4(2)$ $1.8(2)$ $2.4(2)$ $-0.3(2)$ $0.4(2)$ $-0.6(2)$ Kincture VII         0 $117734(2)$ $3734(3)$ $3778(5)$ $2.447$ $1.17(1)$ $0.941(1)$ $0.947(1)$ $0.947(1)$ $0.037(9)$ $-0.017(7)$ $0$ Min $12734(2)$ $3962(4)$ $37410(2)$ $1.20(1)$ $1.64(2)$ $1.11(1)$ $0.075(9)$ $-0.017(7)$ $0$ Act $12734(2)$ $3962(4)$ $37410(2)$ $1.20(1)$ $1.64(2)$ $1.11(1)$ $0.075(9)$ $-0.017(7)$ $0.042(7)$ Act $12734(2)$ $3374(3)$ $3.234(9)$ $4.4(1)$ $1.91(8)$ $0.42(6)$ $0.42(7)$ Act $1177(3)$ $2187(1)$ $1172(6)$ $4.4(1)$ $1.91(8)$ $0.42(7)$ $0.42(7)$ $0.42(7)$ Act $191(8)$ $0.347(7)$ $1.238(7)$ $0.27(7)$ $0.27(7)$ $0.247(7)$ $0.07(8)$ $0.07(8)$ Act $1.536(7)$ $1.61(7)$ <td>C(14)</td> <td>4735(8)</td> <td>2518(4)</td> <td>3782(6)</td> <td>1.7(2)</td> <td>3.0(3)</td> <td>3.1(3)</td> <td>-0.9(2)</td> <td>0.3(2)</td> <td>- 1.5(2)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(14)        | 4735(8)   | 2518(4)   | 3782(6)  | 1.7(2)   | 3.0(3)  | 3.1(3)  | -0.9(2)   | 0.3(2)    | - 1.5(2)  |
| Structure VI         0         10         10         10         10         117(1)         0         00115(3)         1         1         0         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2(15)        | 3182(8)   | 2939(3)   | 3778(5)  | 2.4(2)   | 1.8(2)  | 2.4(2)  | -0.3(2)   | 0.4(2)    | -0.6(2)   |
| $ \begin{array}{lcccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Structure V  | 11/       |           |          |          |         |         |           |           |           |
| Mn $127342$ $3962(4)$ $37410(2)$ $1.20(1)$ $1.64(2)$ $1.11(1)$ $0.075(9)$ $-0.09(1)$ $0.321(1)$ $7(7)$ $-681(1)$ $-1826(3)$ $3477(1)$ $2.38(8)$ $3.39(9)$ $4.41$ $-0.87(7)$ $0.08(8)$ $2.049(9)$ $7(7)$ $-1826(3)$ $3477(1)$ $2.38(8)$ $3.39(9)$ $4.41$ $-0.87(7)$ $0.08(8)$ $2.049(9)$ $7(7)$ $-1664(1)$ $3574(3)$ $2433(1)$ $2.77(6)$ $4.41$ $1.91(6)$ $0.427(6)$ $-0.09(1)$ $0.276(6)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.049(2)$ $2.019(2)$ $2.024(2)$ $2.019(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Мо           | 0         | 10315(3)  | 1/4      | 0.948(9) | 1.17(1) | 0.94(1) | 0         | -0.017(7) | 0         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Чn           | 12734(2)  | 3962(4)   | 37410(2) | 1.20(1)  | 1.64(2) | 1.11(1) | 0.075(9)  | -0.09(1)  | 0.32(1)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>)</b> (2) | -681(1)   | - 1826(3) | 3427(1)  | 2.38(8)  | 3.39(9) | 4.4(1)  | -0.87(7)  | 0.08(8)   | 2.04(9)   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>J(5)</b>  | 1931(1)   | 717(3)    | 2187(1)  | 1.72(6)  | 4.4(1)  | 1.91(8) | 0.49(7)   | 0.42(6)   | 0.42(7)   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (9)C         | 1944(1)   | 3574(3)   | 4243(1)  | 2.79(8)  | 2.67(9) | 4.0(1)  | - 0.88(7) | - 0.84(8) | - 0.29(8) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (L)C         | - 666(1)  | 3051(2)   | 2920(1)  | 1.25(5)  | 1.61(7) | 1.28(6) | 0.13(5)   | 0.07(5)   | -0.19(5)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (8)          | - 827(1)  | 4694(2)   | 4015(1)  | 1.71(6)  | 1.89(7) | 1.84(7) | 0.18(5)   | 0.35(5)   | - 0.54(6) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>J(2)</b>  | - 456(1)  | - 762(3)  | 3066(2)  | 1.42(8)  | 2.0(1)  | 2.2(1)  | -0.12(8)  | -0.12(8)  | 0.27(9)   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(5)         | 1630(1)   | 604(3)    | 2756(2)  | 1.24(8)  | 2.4(1)  | 1.57(9) | 0.27(7)   | -0.21(7)  | 0.18(8)   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (9)          | 1685(1)   | 2319(3)   | 4045(2)  | 1.49(8)  | 2.6(1)  | 1.9(1)  | 0.03(8)   | -0.40(8)  | 0.36(9)   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(1)         | 498(1)    | 1866(3)   | 3703(1)  | 1.23(7)  | 1.63(9) | 0.97(8) | -0.27(7)  | - 0.06(6) | 0.18(7)   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(8)         | 204(1)    | 3092(3)   | 4104(1)  | 1.70(8)  | 1.77(9) | 1.03(9) | - 0.23(7) | -0.12(7)  | -0.19(8)  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (6)          | -451(1)   | 3610(3)   | 3643(1)  | 1.56(8)  | 1.30(9) | 1.42(9) | - 0.17(7) | 0.46(7)   | -0.10(7)  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(10)        | - 1503(1) | 5078(4)   | 3533(2)  | 1.36(9)  | 2.3(1)  | 3.9(1)  | 0.22(8)   | 0.40(9)   | - 1.1(1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(11)        | 1723(1)   | - 2066(3) | 3897(2)  | 2.27(9)  | 1.8(1)  | 2.4(1)  | 0.53(8)   | - 0.09(9) | 0.53(9)   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(12)        | 1002(1)   | - 2211(3) | 3904(2)  | 2.28(9)  | 1.8(1)  | 2.8(1)  | -0.1(8)   | - 0.29(9) | 0.96(9)   |
| C(14) 1460(2) -523(4) 5017(2) 3.5(1) 2.9(1) 1.2(1) 0.66(9) -0.06(9) 1.02(9) C(15) 2006(1) -1029(3) 4576(2) 2.19(9) 2.2(1) 2.0(1) 0.41(9) -0.64(9) 0.76(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(13)        | 841(1)    | - 1248(4) | 4598(2)  | 2.4(1)   | 3.2(1)  | 2.8(1)  | 0.36(9)   | 0.81(9)   | 1.9(1)    |
| C(15) 2006(1) -1029(3) 4576(2) 2.19(9) 2.2(1) 2.0(1) 0.41(9) -0.64(9) 0.76(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(14)        | 1460(2)   | - 523(4)  | 5017(2)  | 3.5(1)   | 2.9(1)  | 1.2(1)  | 0.66(9)   | - 0.06(9) | 1.02(9)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(15)        | 2006(1)   | -1029(3)  | 4576(2)  | 2.19(9)  | 2.2(1)  | 2.0(1)  | 0.41(9)   | - 0.64(9) | 0.76(9)   |

bond increases in the series  $Cr(CO)_6 < Mo(CO)_6 < W(CO)_6$ , elimination of the CO group becomes more difficult [24,26]. Therefore we may suppose that under the conditions employed (60°C, THF), VIb, unlike VIa, undergoes further CO loss at molybdenum, thus opening up a site for coordination of another molecule of I (Scheme 1).

Chromium has a much smaller covalent radius than Mo and W (1.23 vs. 1.39 and 1.40 Å [10]). Therefore, in a hypothetical complex VI with M = Cr, the Mn-M, M-C(7) and M-O(7) bonds should be correspondingly shorter and hence the C(7)C(8)C(9) and C(8)C(9)O(7) angles should be smaller than those in VIa (where these angles are even smaller than those in IX). Thus, the formation of a 5-membered metallacycle with M = Cr is sterically less favourable than that of a 5-membered metallacycle with M = Mo or W. This is probably the reason why I does not react with Cr(CO)<sub>5</sub>(THF) under the conditions employed.

It is noteworthy that under the same conditions the allenylidene complex  $Cp(OC)_2Mn=C=C=CPh_2$  (X) does not react with carbonyl derivatives of Group VI metals.

# Experimental

All operations were performed in nitrogen atmosphere, using absolute solvents saturated with nitrogen. Complexes I, II and X were prepared as reported elsewhere [27]. Photochemical reactions were performed using a PRK-7 mercury-quartz lamp (1000 W) and a quartz Schlenk vessel fitted with a water jacket. For column chromatography, Chemapol (Czechoslovakia)  $100 \times 160 \mu$  silica gel was used. IR spectra were recorded with an UR-20 Zeiss spectrometer, <sup>1</sup>H NMR spectra with an Perkin–Elmer R20 (60 MHz) spectrometer, and <sup>13</sup>C NMR spectra with a Bruker HX-90 (22.63 MHz) spectrometer. Mass spectra were measured using an MS-30 spectrometer (ionizing electron energy 70 eV, temperature of ion source 200°C, temperature of injection system 20°C).

X-Ray experiments were carried out with a Syntex P2<sub>1</sub> four-circle autodiffractometer (graphite monochromated Mo- $K_{\alpha}$  radiation) at  $-120^{\circ}$ C. Calculations were performed with an Eclipse S/200 computer using INEXTL programs [28]. The crystal data and experimental details are listed in Table 5. For VIa reflection intensities were corrected for absorption taking into account a real crystal shape (an irregular parallelepiped of size  $0.03 \times 0.06 \times 0.015$  mm) according to ref. 29. Both structures were solved by convenient Patterson and Fourier methods and refined by full matrix least-squares. All non-hydrogen atoms were refined with anisotropic thermal factors. In VIa the hydrogen atoms (methyl ones were located from the difference synthesis, others placed in calculated positions) were included as fixed contributions with  $B_{1so} = 3.5 \text{ Å}^2$ . In VII all the hydrogens were located from the difference synthesis and refined isotropically. The positional and thermal atomic parameters are listed in Tables 6 and 7.

## Reaction of I with $W(CO)_{s}(THF)$

0.4 g (1.54 mmol) of I was added to a solution of  $W(CO)_5$ (THF) prepared by UV irradiation of 1.8 g (5.11 mmol) of  $W(CO)_6$  in 180 ml of THF for 2 h at 4°C. The mixture was refluxed until complete disappearance of I (controlled by thin-layer chromatography), the yellow colour of the mixture turning to dark brown. The

| Atom      | Structu | ire VIa |     | Structure V | Structure VII |        |                  |  |  |
|-----------|---------|---------|-----|-------------|---------------|--------|------------------|--|--|
|           | x       | y       | z   | x           | у             | z      | B <sub>150</sub> |  |  |
| H[C(8)]   | 595     | 114     | 182 | 39(1)       | 357(3)        | 456(2) | 2.2(6)           |  |  |
| H[C(10)]  | 584     | -110    | 203 | -175(1)     | 403(4)        | 349(2) | 2.1(6)           |  |  |
| H'[C(10)] | 470     | - 98    | 65  | -144(1)     | 555(4)        | 293(2) | 4.2(8)           |  |  |
| H"[C(10)] | 680     | -118    | 84  | -169(1)     | 577(4)        | 387(2) | 2.3(6)           |  |  |
| H[C(11)]  | 86      | 281     | 469 | 250(1)      | - 76(4)       | 471(2) | 3.7(7)           |  |  |
| H[C(12)]  | 229     | 167     | 551 | 154(2)      | 21(4)         | 554(2) | 4.9(8)           |  |  |
| H[C(13)]  | 537     | 156     | 467 | 42(1)       | -118(4)       | 477(2) | 3.3(7)           |  |  |
| H[C(14)]  | 580     | 262     | 336 | 66(1)       | - 296(4)      | 353(2) | 2.9(7)           |  |  |
| HIC(15)   | 225     | 337     | 334 | 191(1)      | -262(4)       | 353(2) | 3.1(7)           |  |  |

|               | ,      |       |   | • •               |      |     |          |       |
|---------------|--------|-------|---|-------------------|------|-----|----------|-------|
| COORDINATES ( | (×10°) | ) AND | B | (A <sup>2</sup> ) | OF ' | THE | HYDROGEN | ATOMS |

solvent was removed in vacuo, and the residue was chromatographed on SiO<sub>2</sub>. A dark-brown zone was eluted by a petroleum ether/ether mixture (9/1), giving 0.21 g (24%) of VIa isolated as dark-brown crystals, m.p. 116–120°C (dec.). Found: C, 32.97; H, 1.83; Mn, 10.35.  $C_{15}H_9MnO_8W$  calcd.: C, 32.40; H, 1.63; Mn, 9.88%. Mass spectrum (m/z, for <sup>184</sup>W): 556 [M]<sup>+</sup>; 528 [M – CO]<sup>+</sup>; 500 [M – 2CO]<sup>+</sup>; 472 [M – 3CO]<sup>+</sup>; 444 [M – 4CO]<sup>+</sup>; 416 [M – 5CO]<sup>+</sup>; 388 [M – 6CO]<sup>+</sup>; 120 [CpMn]<sup>+</sup>.

# Reaction of V with $W(CO)_{5}(THF)$

**TABLE 7** 

 $W(CO)_5$ (THF) solution was prepared by UV irradiation (2 h, 4°C) of 2.70 g (7.67 mmol) of  $W(CO)_6$  in 150 ml of THF. The reaction of this solution with 2.0 g (7.68 mmol) of V was performed as above, yielding 0.93 g (21.8%) of VIa, characterized by m.p. and IR spectrum.

## Reaction of I with Mo(CO)<sub>5</sub>(THF)

0.5 g (1.22 mmol) of I was added to a solution of  $Mo(CO)_5(THF)$  prepared from 1.0 g (3.83 mmol) of  $Mo(CO)_6$  in 40 mol of THF (UV irradiation for 1.5 h at 4°C). The mixture was stirred for 1 h at 40–60°C, then the solvent was removed in vacuo and the residue was chromatographed on SiO<sub>2</sub>. A brown zone eluted by benzene was chromatographed once more on SiO<sub>2</sub>. Yellow-brown and dark-brown zones were eluted by a petroleum ether/ether mixture (9/1). From the yellow-brown zone, 0.06 g (7.0%) of VIb was isolated as dark-brown crystals, m.p. 89–90°C(dec.). Found: C, 38.72; H, 2.07; Mn, 11.93.  $C_{15}H_9MnMoO_8$  calcd.: C, 38.49; H, 1.94; Mn, 11.74%. Mass spectrum (m/z, for <sup>98</sup>Mo): 470[M]<sup>+</sup>; 416 [M - 2CO]<sup>+</sup>; 360 [M - 4CO]<sup>+</sup>; 204 [ $Cp(OC)_2Mn$ ]<sup>+</sup>; 148 [Cp(OC)Mn]<sup>+</sup>; 120 [CpMn]<sup>+</sup>; 55 [Mn]<sup>+</sup>. The dark-brown zone yielded 0.17 g (27.7%) of dark-brown crystalline VII, decomposing at 300°C without melting. Found: C, 42.86; H, 2.68; Mn, 15.52.  $C_{24}H_{18}Mn_2MoO_{10}$  calcd.: C, 42.88; H, 2.70; Mn, 16.35%.

# Reaction of V with $Mo(CO)_5(THF)$

0.1 g (3.84 mmol) of V was added to the  $Mo(CO)_5(THF)$  solution prepared from 2.0 g (7.58 mmol) of  $Mo(CO)_6$  in 150 ml of THF (2 h, 4°C). The mixture was refluxed for 1 h. Then the solvent was removed in vacuo and the residue was

chromatographed on  $SiO_2$ . From a dark-brown zone, eluted by benzene, 0.26 g (20.2%) of VII was isolated and characterized by its IR spectrum.

## References

- 1 A.B. Antonova, N.E. Kolobova, P.V. Petrovsky, B.V. Lokshin and N.S. Obezyuk, J. Organomet. Chem., 137 (1977) 55.
- 2 N.E. Kolobova, A.B. Antonova, O.M. Khitrova, M.Yu. Antipin and Yu.T. Struchkov, J. Organomet. Chem., 137 (1977) 69.
- 3 N.E. Kolobova, A.B. Antonova, O.M. Khitrova, J. Organomet. Chem., 146 (1978) C17.
- 4 H. Berke, Z. Naturforsch., B 35 (1980) 86.
- 5 N.E. Kolobova, L.L. Ivanov, O.S. Zhvanko and P.V. Petrovsky, Izv. Akad. Nauk SSSR, Ser. Khim., (1981) 432.
- 6 H. Berke, J. Organomet. Chem., 185 (1980) 75.
- 7 V.G. Andrianov, Yu.T. Struchkov, N.E. Kolobova, A.B. Antonova and N.S. Obezyuk, J. Organomet. Chem., 122 (1976) C33.
- 8 N.E. Kolobova, L.L. Ivanov, O.S. Zhvanko, G.G. Aleksandrov and Yu.T. Struchkov, J. Organomet. Chem., 228 (1982) 265.
- 9 M. Green, J.Z. Nyathi, C. Scott, F.G.A. Stone, A.J. Welch and P. Woodward, J. Chem. Soc., Dalton Trans., (1978) 1067.
- 10 L. Pauling, Proc. Nat. Acad. Sci. U.S.A. 72 (1975) 3799.
- 11 K.B. Knobler, A.J. Wilson, R.N. Hider, I.W. Jensen, B.R. Penford, W.T. Robinson and C.J. Wilkins, J. Chem. Soc., Dalton Trans., (1983) 1299.
- 12 F. Dawans, J. Dewaily and J. Meunier-Piret, J. Organomet. Chem., 76 (1974) 53.
- 13 B.P. Biryukov and Yu.T. Struchkov, Zh. Strukt. Khim., 9 (1968)655.
- 14 C.P. Casey, R.M. Bullock, W.C. Fultz and A.L. Rheinhold, Organometallics, 1 (1982) 1591.
- 15 M.R. Churchill, K.N. Amoh and H.J. Wasserman, Inorg. Chem., 20 (1981) 1609.
- 16 F.C. Wilson and D.P. Shoemaker, Naturwissenschaften, 43 (1956) 57.
- 17 A.N. Nesmeyanov, G.G. Aleksandrov, A.B. Antonova, K.N. Anisimov, N.E. Kolobova and Yu.T. Struchkov, J. Organomet. Chem., 110 (1976) C36.
- 18 K. Folting, J.C. Huffmann, L.N. Lewis, K.G. Caulton, Inorg. Chem., 18 (1979) 3483.
- 19 H. Nakanishi and Y. Sasada, Bull. Chem. Soc. Jpn., 50 (1977) 3182.
- 20 K. Ucno, H. Nakanishi, M. Hasegawa and Y. Sasada, Acta Crystallogr., Sect. B, 34 (1978) 2034.
- 21 A.W. Hanson, Acta Crystallogr. Sect. B, 31 (1975) 1963.
- 22 W.B. Schweizer and J.D. Dunitz, Helv. Chim. Acta, 65 (1982) 1547.
- 23 A.I. Kitaigorodsky, Molecular Crystals and Molecules. Academic Press, New York, 1973, p. 431.
- 24 V.I. Tel'noy and I.B. Rabinovich, Usp. Khim., 46 (1977) 1337.
- 25 G. Pilcher, K.J. Cavell, C.D. Garner and S. Parkes, J. Chem. Soc., Dalton Trans., (1978) 1311.
- 26 F.A. Cotton, A.K. Fischer and G. Wilkinson, J. Am. Chem. Soc., 78 (1956) 5168; ibid., 81 (1959) 800.
- 27 N.E. Kolobova, L.L. Ivanov and O.S. Zhvanko, Izv. Akad. Nauk SSSR, Ser. Khim., (1980) 2646.
- 28 R.G. Gerr, A.I. Yanovskii and Yu.T. Struchkov, Kristallografiya, 28 (1983) 1029.
- 29 R.G. Gerr, M.Yu. Antipin, N.G. Furmanova and Yu.T. Struchkov, Kristallografiya, 24 (1979) 951.